#



Data Science


1. Introduction:
   ● What Is Database?
   ● What is Database Management System (DBMS)?
   ● What is Relational Model ?
   ● Introduction to RDBMS .
   ● Brief on E.F CODD .

2.Datatypes and Constraints:
   ● What are Datatypes ?
   ● Types and Examples .
   ● How to use .
   ● What are Constraints?
   ● Types and Examples.
   ● How to use.

3.Statements in SQL :
   ● Data Definition Language (DDL)
   ● Data Manipulation Language (DML)
   ● Transaction Control Language (TCL)
   ● Data Control Language (DCL)
   ● Data Query Language (DQL)

4.Software installation :
   ● Installing and set up of software
   ● Working on Oracle 10g

5. Data Query Language (DQL):
   ● Select
   ● From
   ● Where
   ● Group By
   ● Having
   ● Order By

6.Operators:
   ● Types and Example

7. Functions in SQL :
   ● Single Row Functions
   ● Multi Row Functions
    Max ()
    Min ()
    Sum ()
    Avg ()
   Count ()

8.Sub Query:
   ●Introduction to Sub Query
   ● Working of Sub Query
   ● Query Writing and Execution
   ● Types of Sub Query
   ● 1. Single Row Sub Query
2. Multi Row Sub Query
   ● Nested Sub Query.

9. Pseudo Columns :
   ● Introduction on Pseudo coloumns
   ● ROWID
   ● ROWNUM
   ● Working and Usage.

10. JOINS:
   ● What Is Join?
   ● Types of Joins.
   ● Cartesian Join
   ● Inner Join
   ● Outer Join
   ● Self-Join
   ● Queries and Examples.

11. Co- Related Sub Query
   ● Working and Examples

12. Data Definition Language (DDL)
   ● Create
   ● Rename
   ● Alter
   ● Truncate
   ● Drop

12. Data Manipulation Language (DML)
   ● Insert
   ● Delete
   ● Update

13.Transaction Control Language (TCL):
   ● Commit
   ● Save point
   ● Rollback

14. Data Control Language (DCL)
   ● Grant
   ● Revoke

15. Normalization
   ● Introduction to Normalization
   ● Types of Normal Forms
   ● Examples.

16. E R Diagrams :
   ● Introduction to ERD
   ● Examples.

1.Introduction to Python.:
   ● Installation & Environment settings.
   ● Introduction to Shell.

2. Variables, Keywords, Data types and Identifiers.
   ● Variables
   ● Keywords
   ● Data types
   ● Identifiers

3. String, List, Set, Tuple and Dictionary and Slicing
   ● String Data types
   ● List Data types
   ● Set Data types
   ● Tuple Data types
   ● Dictionary Data types
   ● Slicing

4. Operators :
   ● Arithmetic Operators
   ● Logical Operators
   ● Relational Operators
   ● Bitwise operators
   ● Assignment Operators
   ● Membership Operators
   ● Identity Operators

5. Control Statements
   ● Decisional Statements
   ● Looping Statements
   ● Break, Continue and Pass

6. Input and Print Statements:
   ● Input statements
   ● Print statements

7. Functions or Methods
   ● Types of Functions
   ● Recursion
   ● Arguments
   ● Packing and unpacking(varargs)

8. Oops:
   ● Class, Objects
   ● Inheritance
   ● Method Overriding
   ● Access Specifies

9. File Handling and Json:
   ● Flat File Handling
   ● Json
   ● Pickle
   ● Recursion in C Language with practical

10. Exception Handling:
   ● Try
   ● Except and final
   ● Custom Exceptions
   ● Raising Exceptions
   ● Assertions

11. Comprehension
   ● List Comprehension

12. Decorators
   ● Method
   ● Class Level

13. Map, Filter and Lambda Expressions:

14.Iterators and Generators:

1. Pandas Beginner To Advanced:
   ● Data Frames
   ● Data Cleaning
   ● Data Aggregation
   ● Feature Engineering
   ● Vectorization
   ● Parallel Processing
   ● Maps and Visualization
2. Statistics:
   ● Exploratory Data Analysis
   ● Descriptive statistics
   ● Sampling Theory
   ● Frequency distributions
   ● Mena,Median,Mode,standard Deviation,variance
   ● Covariance and correlation
   ● Normal Distribution
   ● Z scores

3. Probability Theory:
   ● Intoduction to probability
   ● Estimating Probablity
   ● Addition Rule
   ● Permutation and combination
   ● Bayes Theorem

   4. Hypothesis Testing

5. Machine learning:
   ● Supervised and Unsupervised learning
   ● Linear Regression
   ● Polynomial Regression
   ● Logistic Regression
   ● Support vector machines
   ● Decision Trees
   ● K-Nearest Neighbors
   ● Assessing performance
   ●Regularization,Outfitting,outliers and generalization

6.Deep Learning:
   ● Neural Networks
   ● NLP
   ● Unsupervised learning
   ● Directionality Reduction
   ● Customer Clusteing
   ● Real Time Case Studies

web counter